Colles de Maths - semaine 17 - MP*1

Julien Allasia - ENS de Lyon

Algèbre linéaire

Exercice 1 Soit $A \in \mathcal{M}_n(\mathbb{C})$ de spectre $\{\lambda_1, ..., \lambda_n\}$. Déterminer les valeurs propres de la comatrice de A en fonction des λ_i .

Exercice 2 Soit K un corps, E un K-espace vectoriel de dimension finie et $u \in \mathcal{L}(E)$. Montrer qu'il y a équivalence entre :

- (i) Tout sous-espace de E stable par u admet un supplémentaire stable par u.
- (ii) Le polynôme minimal de u est sans facteur carré, c'est-à-dire qu'il existe $\lambda \in \mathbb{K}$, $r \geqslant 1$ et $P_1, ..., P_r$ des polynômes irréductibles unitaires deux à deux distincts tels que $P = \lambda P_1 ... P_r$.

Exercice 3 Soit K un corps, E un K-espace vectoriel de dimension finie et $u \in \mathcal{L}(E)$. Montrer qu'il y a équivalence entre :

- (i) Les seuls sous-espaces de E stables par u sont $\{0\}$ et E.
- (ii) Le polynôme caractéristique de u est irréductible sur K.

Exercice 4 Soit $A, B \in \mathcal{M}_n(\mathbb{R})$. Montrer que si A et B sont semblables dans $\mathcal{M}_n(\mathbb{C})$, elles le sont aussi dans $\mathcal{M}_n(\mathbb{R})$.

Exercice 5 Soit $n \ge 1$. Montrer que les matrices de la forme

$$C_{a_0,\dots,a_{n-1}} = \begin{pmatrix} a_0 & a_{n-1} & \cdots & a_1 \\ a_1 & a_0 & \cdots & a_2 \\ \vdots & \vdots & \ddots & \vdots \\ a_{n-1} & a_{n-2} & \cdots & a_0 \end{pmatrix}$$

avec $a_0,...,a_{n-1} \in \mathbb{C}$ sont simultanément diagonalisables dans $\mathcal{M}_n(\mathbb{C})$ et déterminer leurs valeurs propres.

Algèbre bilinéaire

Exercice 6 Calculer

$$\inf_{(a_1,...,a_n)\in\mathbb{R}^n} \int_0^\infty e^{-x} \left(1 + a_1 x + ... + a_n x^n\right)^2 dx.$$

Exercice 7 Soit E un espace euclidien et $u \in \mathcal{L}(E)$ tel que $|||u||| \leq 1$.

Montrer que la suite $\left(\frac{1}{p+1}\sum_{k=0}^{p}u_k\right)_p$ converge vers le projecteur orthogonal sur $\operatorname{Ker}(u-\operatorname{Id})$.

Indication: On pourra commencer par montrer que $E = \text{Ker}(u - \text{Id}) \oplus \text{Im}(u - \text{Id})$.

Exercice 8 Soit E un espace euclidien, C un convexe fermé non vide de E, $x \in E$.

- 1. Montrer qu'il existe un unique $p(x) \in C$ tel que ||x p(x)|| = d(x, C). Indication : Pour l'unicité, on pourra utiliser l'identité du parallélogramme : si ABCD est un parallélogramme, $2AB^2 + 2BC^2 = AC^2 + BD^2$.
- 2. Montrer que pour tout $y \in C$, on a $\langle x p(x), y p(x) \rangle \leq 0$.
- 3. Montrer que l'application p est 1-lipschitzienne.

Bonus : Montrer par des contre-exemples la nécessité des hypothèses.

Exercice 9 Soit E un espace euclidien, $(f_i)_{i\in I}$ une famille d'endomorphismes de E autoadjoints, commutant deux à deux. Montrer qu'il existe une base orthonormée de E qui diagonalise tous les f_i .

Variante: En remplaçant autoadjoints par trigonalisables, montrer qu'il existe une base orthonormée de E qui trigonalise tous les f_i .

Exercice 10 Soit $A \in \mathcal{M}_n(\mathbb{R})$. Montrer qu'il existe $P \in \mathcal{O}_n(\mathbb{R})$ telle que tPAP ait tous ses termes diagonaux égaux.

Exercice 11 Soit $B \in \mathcal{S}_n^{++}(\mathbb{R})$ et $A \in \mathcal{M}_n(\mathbb{R})$ tel que pour tout valeur propre complexe λ de A, $|\lambda| < 1$. Montrer qu'il existe une unique matrice symétrique définie positive S telle que $S - AS^tA = B$.